The Impact of Persistence Length on the Communication Efficiency of Microtubules and CNTs

نویسندگان

  • Stephen F. Bush
  • Sanjay Goel
چکیده

There are similarities between microtubules in living cells and carbon nanotubes (CNTs). Both microtubules and carbon nanotubes have a similar physical structure and properties and both are capable of transporting information at the nanoscale. Microtubules and carbon nanotubes can also self-organize to create random graph structures, which can be used as communication networks. The behavior of microtubules can be understood by investigating the behavior of their synthetic counterparts, namely, carbon nanotubes (CNT). At the same time, networks of CNTs may be used for molecular-level transport in the human body for treatment of diseases. This paper seeks to examine the basic properties of the networks created by CNTs and microtubules. This behavior depends strongly on the alignment of bond segments and filaments, which in turn depends on the persistence length of the tubes. Persistence length is also important in analyzing other structures such as DNA; however, the focus in this paper is on nanotube structures and microtubules. We use graph spectral analysis for analyzing a simulated CNT network in which a network graph is extracted from the layout of the tubes and graph properties of the resultant graphs are examined. The paper presents the results of the simulation with tubes of different persistence lengths.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of taxol and CNTs on the stability analysis of protein microtubules

Microtubules are used as targets for anticancer drugs due to their crucial role in the process of mitosis. Recent studies show that carbon nanotubes (CNTs) can be classified as microtubule-stabilizing agents as they interact with protein microtubules (MTs), leading to interference in the mitosis process. CNTs hold a substantial promising application in cancer therapy in conjunction with other c...

متن کامل

Numerical Investigation of Size and Structure Effect on Tensile Characteristics of Symmetric and Asymmetric CNTs

In this research, the influence of structure on the tensile properties of single- walled carbon nanotubes (CNTs) is evaluated using molecular mechanics technique and finite element method. The effects of diameter, length and chiral angle on elastic modulus and Poisson’s ratio of armchair, zigzag and chiral structures are investigated. To simulate the CNTs, a 3D FEM code is developed using the A...

متن کامل

Misalignment on the Persistence of Inflation in Iran

The purpose of this study is to investigate the impact of exchange rate misalignment on inflation persistence. For this purpose, Vector Auto Regression method and Markov Switching model is used for quarterly data during 1989:4 -2014:3. The results show that, the impact of liquidity growth and exchange rate misalignment on inflation persistence is positive. On the other hand, GDP growth has a ne...

متن کامل

Dynamic Behavior of Anisotropic Protein Microtubules Immersed in Cytosol Via Cooper–Naghdi Thick Shell Theory

In the present research, vibrational behavior of anisotropic protein microtubules (MTs) immersed in cytosol via Cooper–Naghdi shell model is investigated. MTs are hollow cylindrical structures in the eukaryotic cytoskeleton which surrounded by filament network. The temperature effect on vibration frequency is also taken into account by assuming temperature-dependent material properties for MTs....

متن کامل

Finite Element Analysis of Low Velocity Impact on Carbon Fibers/Carbon Nanotubes Reinforced Polymer Composites

An effort is made to gain insight on the effect of carbon nanotubes (CNTs) on the impact response of carbon fiber reinforced composites (CFRs) under low velocity impact. Certain amount of CNTs could lead improvements in mechanical properties of composites. In the present investigation, ABAQUS/Explicit finite element code (FEM) is employed to investigate various damages modes of nano composites ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009